An electrostatic interpretation of the zeros of sieved ultraspherical polynomials

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterizations of Generalized Hermite and Sieved Ultraspherical Polynomials

A new characterization of the generalized Hermite polynomials and of the orthogonal polynomials with respect to the measure |x|γ(1 − x2)1/2dx is derived which is based on a “reversing property” of the coefficients in the corresponding recurrence formulas and does not use the representation in terms of Laguerre and Jacobi polynomials. A similar characterization can be obtained for a generalizati...

متن کامل

An Electrostatic Interpretation of the Zeros of the Freud-type Orthogonal Polynomials

Polynomials orthogonal with respect to a perturbation of the Freud weight function by the addition of a mass point at zero are considered. These polynomials, called Freud-type orthogonal polynomials, satisfy a second order linear differential equation with varying polynomial coefficients. It plays an important role in the electrostatic interpretation for the distribution of zeros of the corresp...

متن کامل

An Electrostatic Interpretation of the Zeros of Paraorthogonal Polynomials on the Unit Circle

We show that if μ is a probability measure with infinite support on the unit circle having no singular component and a differentiable weight, then the corresponding paraorthogonal polynomial Φn(z;β) solves an explicit second order linear differential equation. We also show that if τ 6= β, then the pair (Φn(z;β),Φn(z; τ)) solves an explicit first order linear system of differential equations. On...

متن کامل

Bounds for Extreme Zeros of Quasi–orthogonal Ultraspherical Polynomials

We discuss and compare upper and lower bounds obtained by two different methods for the positive zero of the ultraspherical polynomial C n that is greater than 1 when −3/2 < λ <−1/2. Our first approach uses mixed three term recurrence relations and interlacing of zeros while the second approach uses a method going back to Euler and Rayleigh and already applied to Bessel functions and Laguerre a...

متن کامل

Variations on a theme of Heine and Stieltjes: an electrostatic interpretation of the zeros of certain polynomials

We show a way to adapt the ideas of Stieltjes to obtain an electrostatic interpretation of the zeroes of a large class of orthogonal polynomials. c © 1998 Elsevier Science B.V. All rights reserved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Physics

سال: 2020

ISSN: 0022-2488,1089-7658

DOI: 10.1063/1.5063333